Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Dalton Trans ; 53(18): 7965-7970, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38647331

RESUMEN

Organic crystal materials with metal-free feature and intrinsically low molecular mass are highly desirable for applications in flexible smart devices. Here, we reported a plastic crystal, tris(hydroxymethyl)aminomethane perchlorate (Tris-HClO4), which crystallizes in the R3̄ space group at room temperature and undergoes plastic phase transition at 369 K, showing a large entropy gain of 70.5 J mol-1 K-1, much higher than its fusion entropy gain (12.9 J mol-1 K-1). PXRD measurement indicates that it has cubic lattice symmetry in the high-temperature phase. Moreover, it exhibits excellent dielectric permittivity switching properties and robust cyclic stability. This work could be the pathway for chemical designing multifunctional switchable materials with the motive of combining the idea of symmetry breaking and plastic phase transition.

2.
Inorg Chem ; 62(49): 19930-19936, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37990884

RESUMEN

Organic-inorganic hybrid perovskites (OIHPs) have been emerging as a hot research topic due to their potential applications in energy storage, semiconductors, and electronic devices. Herein, we systematically investigated the synthesis and phase transition behaviors of the enantiomeric OIHPs, (R) and (S)-N,N-dimethyl-3-fluoropyrrolidinium cadmium bromide ([DMFP][CdBr3]), and the hybrid trigonal structure [DMFP]3 (CdBr3)(CdBr4). The enantiomers have a mirror-symmetric structure and enhanced solid-state phase transition points of 417 and 443 K, in contrast to the nonfluorinated parent compound, N,N-dimethyl-pyrrolidinium cadmium bromide ([DMP][CdBr3], 385 K). Moreover, racemic H/F substitution on the pyrrolidinium cations leads to the formation of a trigonal compound, showing above-room-temperature structural phase transition and dominant ferroelasticity. This work discovers chiral enantiomeric OIHPs through H/F substitution, demonstrating a useful chemical synthesis strategy for exploring novel phase transition materials.

3.
J Am Chem Soc ; 145(42): 23292-23299, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819908

RESUMEN

Fullerenes offer versatile functionalities and are promising materials for a widespread range of applications from biomedicine and energy to electronics. Great efforts have been made to manipulate the symmetries of fullerene and its derivatives for studying material properties and novel effects, such as ferroelectricity with polar symmetry; however, no documentary report has been obtained to realize their ferroelectricity. Here, for the first time, we demonstrated clear ferroelectricity in a fullerene adduct formed by C60 and S8. More is different: the combination of the most symmetric molecule C60 with the highest Ih symmetry and molecule S8 with high D4d symmetry resulted in the polar C60S8 adduct with a low crystallographic symmetry of the C2v (mm2) point group at room temperature. The presented C60S8 undergoes polar-to-polar ferroelectric phase transition with the mm2Fm notation, whose ferroelectricity was confirmed by a ferroelectric hysteresis loop and ferroelectric domain switching. This finding opens up a new functionality for fullerenes and sheds light on the exploration of more ferroelectric fullerenes.

4.
Adv Sci (Weinh) ; 10(24): e2302426, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37328441

RESUMEN

Inorganic ferroelectrics have long dominated research and applications, taking advantage of high piezoelectric performance in bulk polycrystalline ceramic forms. Molecular ferroelectrics have attracted growing interest because of their environmental friendliness, easy processing, lightweight, and good biocompatibility, while realizing the considerable piezoelectricity in their bulk polycrystalline forms remains a great challenge. Herein, for the first time, through ring enlargement, a molecular ferroelectric 1-azabicyclo[3.2.1]octonium perrhenate ([3.2.1-abco]ReO4 ) with a large piezoelectric coefficient d33 up to 118 pC/N in the polycrystalline pellet form is designed, which is higher than that of the parent 1-azabicyclo[2.2.1]heptanium perrhenate ([2.2.1-abch]ReO4 , 90 pC/N) and those of most molecular ferroelectrics in polycrystalline or even single crystal forms. The ring enlargement reduces the molecular strain for easier molecular deformation, which contributes to the higher piezoelectric response in [3.2.1-abco]ReO4 . This work opens up a new avenue for exploring high piezoelectric polycrystalline molecular ferroelectrics with great potential in piezoelectric applications.

5.
Inorg Chem ; 61(15): 5836-5843, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35388698

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) have emerged as multifunctional materials with remarkable optical and electronic properties. In particular, 2D-layered lead iodide-based HOIPs possess great practical application potential in the photoelectric field. In this work, we report H/F substitution-induced 1D-to-2D increment of lead iodide HOIPs. The enantiomeric HOIPs, S- and R-FPPbI3 (FP = 3-fluoropyrrolidinium), were achieved by monofluoride substitution on the spacer cations of the parent HOIP, PyPbI3 (Py = pyrrolidinium), showing mirror image structural relationship and reversible solid-state phase transition. A 2D-layered HOIP, (DFP)2PbI4 (DFP = 3,3-difluoropyrrolidinium), was achieved with a low band gap of 2.09 eV through difluoride substitution, thanks to the expansion of the Pb-I network from 1D to 2D. This work highlights the exploration of 1D chiral and 2D-layered HOIP materials with reversible phase transitions through H/F substitution strategies.


Asunto(s)
Yoduros , Cationes , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...